Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
J. physiol. biochem ; 79(1): 223–234, feb. 2023. graf, ilus
Artigo em Inglês | IBECS | ID: ibc-215727

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies. (AU)


Assuntos
Humanos , Fibroblastos Associados a Câncer/metabolismo , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/metabolismo , Paclitaxel , Desoxicitidina , Linhagem Celular Tumoral , Avaliação Pré-Clínica de Medicamentos , Microambiente Tumoral , Detecção Precoce de Câncer
2.
J Physiol Biochem ; 79(1): 223-234, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34865180

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is characterised by a pro-inflammatory stroma and multi-faceted microenvironment that promotes and maintains tumorigenesis. However, the models used to test new and emerging therapies for PDAC have not increased in complexity to keep pace with our understanding of the human disease. Promising therapies that pass pre-clinical testing often fail in pancreatic cancer clinical trials. The objective of this study was to investigate whether changes in the drug-dosing regimen or the addition of cancer-associated fibroblasts (CAFs) to current existing models can impact the efficacy of chemotherapy drugs used in the clinic. Here, we reveal that gemcitabine and paclitaxel markedly reduce the viability of pancreatic cell lines, but not CAFs, when cultured in 2D. Following the use of an in vitro drug pulsing experiment, PDAC cell lines showed sensitivity to gemcitabine and paclitaxel. However, CAFs were less sensitive to pulsing with gemcitabine compared to their response to paclitaxel. We also identify that a 3D co-culture model of MIA PaCa-2 or PANC-1 with CAFs showed an increased chemoresistance to gemcitabine when compared to standard 2D mono-cultures a difference to paclitaxel which showed no measurable difference between the 2D and 3D models, suggesting a complex interaction between the drug in study and the cell type used. Changes to standard 2D mono-culture-based assays and implementation of 3D co-culture assays lend complexity to established models and could provide tools for identifying therapies that will match clinically the success observed with in vitro models, thereby aiding in the discovery of novel therapies.


Assuntos
Fibroblastos Associados a Câncer , Carcinoma Ductal Pancreático , Neoplasias Pancreáticas , Humanos , Desoxicitidina/metabolismo , Desoxicitidina/uso terapêutico , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Avaliação Pré-Clínica de Medicamentos , Linhagem Celular Tumoral , Detecção Precoce de Câncer , Neoplasias Pancreáticas/metabolismo , Gencitabina , Carcinoma Ductal Pancreático/metabolismo , Paclitaxel/metabolismo , Paclitaxel/uso terapêutico , Microambiente Tumoral , Neoplasias Pancreáticas
3.
Cancer Res Commun ; 2(9): 914-928, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-36922934

RESUMO

Wnt signaling is implicated in the etiology of gastrointestinal tract cancers. Targeting Wnt signaling is challenging due to on-target toxicity concerns and lack of druggable pathway components. We describe the discovery and characterization of RXC004, a potent and selective inhibitor of the membrane-bound o-acyl transferase Porcupine, essential for Wnt ligand secretion. Absorption, distribution, metabolism, and excretion and safety pharmacology studies were conducted with RXC004 in vitro, and pharmacokinetic exposure assessed in vivo. RXC004 effects on proliferation and tumor metabolism were explored in genetically defined colorectal and pancreatic cancer models in vitro and in vivo. RXC004 effects on immune evasion were assessed in B16F10 immune "cold" and CT26 immune "hot" murine syngeneic models, and in human cell cocultures. RXC004 showed a promising pharmacokinetic profile, inhibited Wnt ligand palmitoylation, secretion, and pathway activation, and demonstrated potent antiproliferative effects in Wnt ligand-dependent (RNF43-mutant or RSPO3-fusion) colorectal and pancreatic cell lines. Reduced tumor growth and increased cancer cell differentiation were observed in SNU-1411 (RSPO3-fusion), AsPC1 and HPAF-II (both RNF43-mutant) xenograft models, with a therapeutic window versus Wnt homeostatic functions. Additional effects of RXC004 on tumor cell metabolism were confirmed in vitro and in vivo by glucose uptake and 18fluorodeoxyglucose-PET, respectively. RXC004 stimulated host tumor immunity; reducing resident myeloid-derived suppressor cells within B16F10 tumors and synergizing with anti-programmed cell death protein-1 (PD-1) to increase CD8+/regulatory T cell ratios within CT26 tumors. Moreover, RXC004 reversed the immunosuppressive effects of HPAF-II cells cocultured with human peripheral blood mononuclear cells, confirming the multiple anticancer mechanisms of this compound, which has progressed into phase II clinical trials. Significance: Wnt pathway dysregulation drives many gastrointestinal cancers; however, there are no approved therapies that target the pathway. RXC004 has demonstrated the potential to block both tumor growth and tumor immune evasion in a genetically defined, clinically actionable subpopulation of Wnt ligand-dependent gastrointestinal cancers. The clinical utility of RXC004, and other Porcupine inhibitors, in such Wnt ligand-dependent cancers is currently being assessed in patient trials.


Assuntos
Neoplasias Colorretais , Neoplasias Pancreáticas , Humanos , Camundongos , Animais , Via de Sinalização Wnt , Ligantes , Evasão da Resposta Imune , Leucócitos Mononucleares/metabolismo , Neoplasias Pancreáticas/tratamento farmacológico , Inibidores Enzimáticos/farmacologia , Neoplasias Colorretais/tratamento farmacológico
4.
Am J Physiol Cell Physiol ; 298(3): C430-41, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20018950

RESUMO

Recently, we identified, for the first time, two-pore channels (TPCs, TPCN for gene name) as a novel family of nicotinic acid adenine dinucleotide phosphate (NAADP)-gated, endolysosome-targeted calcium release channels. Significantly, three subtypes of TPCs have been characterized, TPC1-3, with each being targeted to discrete acidic calcium stores, namely lysosomes (TPC2) and endosomes (TPC1 and TPC3). That TPCs act as NAADP-gated calcium release channels is clear, given that NAADP binds to high- and low-affinity sites associated with TPC2 and thereby induces calcium release and homologous desensitization, as observed in the case of endogenous NAADP receptors. Moreover, NAADP-evoked calcium signals via TPC2 are ablated by short hairpin RNA knockdown of TPC2 and by depletion of acidic calcium stores with bafilomycin. Importantly, however, NAADP-evoked calcium signals were biphasic in nature, with an initial phase of calcium release from lysosomes via TPC2, being subsequently amplified by calcium-induced calcium release (CICR) from the endoplasmic reticulum (ER). In marked contrast, calcium release via endosome-targeted TPC1 induced only spatially restricted calcium signals that were not amplified by CICR from the ER. These findings provide new insights into the mechanisms that cells may utilize to "filter" calcium signals via junctional complexes to determine whether a given signal remains local or is converted into a propagating global signal. Essentially, endosomes and lysosomes represent vesicular calcium stores, quite unlike the ER network, and TPCs do not themselves support CICR or, therefore, propagating regenerative calcium waves. Thus "quantal" vesicular calcium release via TPCs must subsequently recruit inositol 1,4,5-trisphoshpate receptors and/or ryanodine receptors on the ER by CICR to evoke a propagating calcium wave. This may call for a revision of current views on the mechanisms of intracellular calcium signaling. The purpose of this review is, therefore, to provide an appropriate framework for future studies in this area.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , Animais , Sítios de Ligação , Canais de Cálcio/genética , Retículo Endoplasmático/metabolismo , Endossomos/metabolismo , Humanos , Ativação do Canal Iônico , Cinética , Lisossomos/metabolismo , NADP/análogos & derivados , NADP/metabolismo , Retículo Sarcoplasmático/metabolismo
5.
Nature ; 459(7246): 596-600, 2009 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-19387438

RESUMO

Ca(2+) mobilization from intracellular stores represents an important cell signalling process that is regulated, in mammalian cells, by inositol-1,4,5-trisphosphate (InsP(3)), cyclic ADP ribose and nicotinic acid adenine dinucleotide phosphate (NAADP). InsP(3) and cyclic ADP ribose cause the release of Ca(2+) from sarcoplasmic/endoplasmic reticulum stores by the activation of InsP(3) and ryanodine receptors (InsP(3)Rs and RyRs). In contrast, the nature of the intracellular stores targeted by NAADP and the molecular identity of the NAADP receptors remain controversial, although evidence indicates that NAADP mobilizes Ca(2+) from lysosome-related acidic compartments. Here we show that two-pore channels (TPCs) comprise a family of NAADP receptors, with human TPC1 (also known as TPCN1) and chicken TPC3 (TPCN3) being expressed on endosomal membranes, and human TPC2 (TPCN2) on lysosomal membranes when expressed in HEK293 cells. Membranes enriched with TPC2 show high affinity NAADP binding, and TPC2 underpins NAADP-induced Ca(2+) release from lysosome-related stores that is subsequently amplified by Ca(2+)-induced Ca(2+) release by InsP(3)Rs. Responses to NAADP were abolished by disrupting the lysosomal proton gradient and by ablating TPC2 expression, but were only attenuated by depleting endoplasmic reticulum Ca(2+) stores or by blocking InsP(3)Rs. Thus, TPCs form NAADP receptors that release Ca(2+) from acidic organelles, which can trigger further Ca(2+) signals via sarcoplasmic/endoplasmic reticulum. TPCs therefore provide new insights into the regulation and organization of Ca(2+) signals in animal cells, and will advance our understanding of the physiological role of NAADP.


Assuntos
Canais de Cálcio/metabolismo , Sinalização do Cálcio , Cálcio/metabolismo , NADP/análogos & derivados , Organelas/metabolismo , Animais , Canais de Cálcio/genética , Sinalização do Cálcio/efeitos dos fármacos , Linhagem Celular , Galinhas , Humanos , Concentração de Íons de Hidrogênio , Células Secretoras de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Camundongos , Camundongos Knockout , Dados de Sequência Molecular , NADP/metabolismo , NADP/farmacologia , Organelas/efeitos dos fármacos , Ligação Proteica
6.
Cell Calcium ; 44(2): 190-201, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18191199

RESUMO

In arterial myocytes the Ca(2+) mobilizing messenger NAADP evokes spatially restricted Ca(2+) bursts from a lysosome-related store that are subsequently amplified into global Ca(2+) waves by Ca(2+)-induced Ca(2+)-release from the sarcoplasmic reticulum (SR) via ryanodine receptors (RyRs). Lysosomes facilitate this process by forming clusters that co-localize with a subpopulation of RyRs on the SR. We determine here whether RyR subtypes 1, 2 or 3 selectively co-localize with lysosomal clusters in pulmonary arterial myocytes using affinity purified specific antibodies. The density of: (1) alphalgP120 labelling, a lysosome-specific protein, in the perinuclear region of the cell (within 1.5mum of the nucleus) was approximately 4-fold greater than in the sub-plasmalemmal (within 1.5mum of the plasma membrane) and approximately 2-fold greater than in the extra-perinuclear (remainder) regions; (2) RyR3 labelling within the perinuclear region was approximately 4- and approximately 14-fold greater than that in the extra-perinuclear and sub-plasmalemmal regions, and approximately 2-fold greater than that for either RyR1 or RyR2; (3) despite there being no difference in the overall densities of fluorescent labelling of lysosomes and RyR subtypes between cells, co-localization with alphalgp120 labelling within the perinuclear region was approximately 2-fold greater for RyR3 than for RyR2 or RyR1; (4) co-localization between alphalgp120 and each RyR subtype declined markedly outside the perinuclear region. Furthermore, selective block of RyR3 and RyR1 with dantrolene (30muM) abolished global Ca(2+) waves but not Ca(2+) bursts in response to intracellular dialysis of NAADP (10nM). We conclude that a subpopulation of lysosomes cluster in the perinuclear region of the cell and form junctions with SR containing a high density of RyR3 to comprise a trigger zone for Ca(2+) signalling by NAADP.


Assuntos
Sinalização do Cálcio , Cálcio/metabolismo , Pulmão/metabolismo , Lisossomos/metabolismo , Músculo Liso Vascular/metabolismo , NADP/análogos & derivados , Artéria Pulmonar/metabolismo , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Animais , Células Cultivadas , Fluorescência , Coração/fisiologia , Pulmão/citologia , Masculino , Músculo Liso Vascular/citologia , NADP/metabolismo , Isoformas de Proteínas , Artéria Pulmonar/citologia , Ratos , Ratos Wistar , Rianodina/farmacologia , Retículo Sarcoplasmático/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...